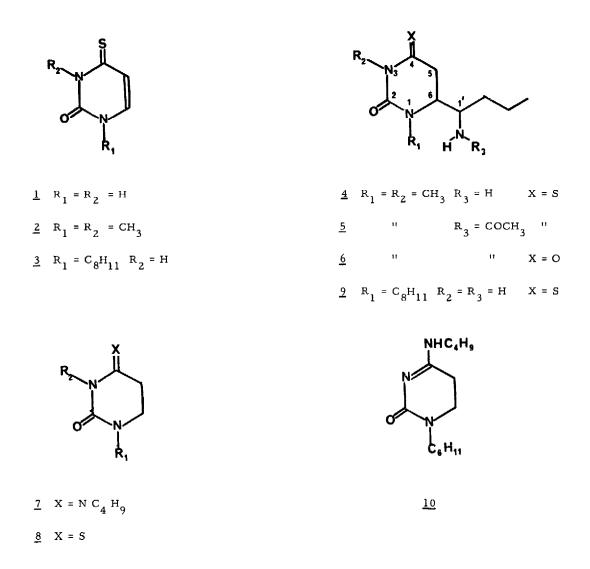
THIOCAR BONYL PHOTOCHEMISTRY VI. LIGHT INDUCED ADDITION OF A PRIMARY AMINE TO 4-THIOURACIL DERIVATIVES

Jean-Louis FOURREY


Institut de Chimie des Substances Naturelles, C.N.R.S, 91190 Gif sur Yvette, France (Received in UK 19 November 1975; accepted for publication 12 December 1975)

The photochemistry of the minor nucleic acid constituent 4-thiouracil $\underline{1}$ which possesses an $\alpha \beta$ unsaturated thiocarbonyl function is of special interest. So far, it has been reported that 4-thiouracil derivatives are photoreactive towards oxygen (1), olefins (2, 3), alcohols (4) and sodium borohydride (5). We have now observed that a primary amine, 1-aminobutane, interacts photochemically with 4-thiouracil derivatives 2 and 3

When a solution (water, methanol, methylene chloride) of 1, 3-dimethyl 4-thiouracil $\underline{2}$ is irradiated (6) in presence of 1-aminobutane the former disappears rapidly. Mass spectro metry (M⁺⁺ 229 = 156 + 73) and analytical data of the two major photoproducts A (mp 193-194°) and B (mp 162-163°) (isolated in 60 % yield from a CH₂Cl₂ solution irradiated at -40°) indicate that they result from the addition of 1-aminobutane to 1, 3-dimethyl 4-thiouracil $\underline{2}$. Adducts A and B display very similar spectral data suggesting that they are diastereoisomers

Acetic anhydride treatment of compounds A and B yields monoacetyl derivatives which have been assigned structures $\underline{5a}$ (mp 148-149°) and $\underline{5b}$ (mp 120-123°) They manifest in their proton NMR spectra a characteristic COCH₃ signal at 2 00 and 1 90 ppm respectively Other data, such as UV absorption maxima and the position of the two N-methyl signals for each compound (Table), indicate that both are 5, 6-dihydro 4-thiouracil derivatives Inspection of the ¹³C NMR spectra of acetates <u>5a</u> and <u>5b</u> shows that they have two trisubstituted carbon atoms which appear at 50 89 and 57 00 ppm for <u>5a</u> and at 49 59 and 58 30 ppm for <u>5b</u> This demonstrates that a carbon-carbon bond has been formed in this photoaddition process

Irradiation of acetates <u>5a</u> and <u>5b</u> in presence of oxygen (4) yields the 5, 6-dihydrouracil derivatives <u>6a</u> (mp 145-146°) and <u>6b</u> (mp 56°) The site of attachment of the aminobutyl moiety to the C-6 position in <u>oa</u> and <u>6b</u> is in agreement with the following NMR data In the proton NMR spectra of <u>6a</u> and <u>6b</u> the H-5 signals (2H) appear as an AB system centered at 2.80 ppm ($J_{AB} = 16$ Hz) in both compounds while the H-6 signal (1H) is observed at 3 70 ppm (<u>6a</u>) and 3 50 ppm (<u>6b</u>) The observed diamagnetic shift ($\Delta \delta = 0.5$ ppm) for the H-5 signal induced by the replacement of sulfur by oxygen at C-4 is in accordance with previous observations made on 5, 6-dihydrouracil derivatives (4, 7)

These results lead us to attribute tentatively structure $\underline{4}$ to the diastereoisomers A and B. The discrepancy between the spectral data of compounds A ($\underline{4a}$) and B ($\underline{4b}$) and other 5, 6-dihydro 4-thiouracil derivatives (Table) (position of the NMR N-3 methyl signal and wavelength of the UV λ_{max}) results from the interaction between the amino group at C-1' and the thiocarbonyl at C-4. Because of this interaction the thiocarbonyl is masked to thermal addition of excess 1-aminobutane (see below)

A third and minor product has also been isolated in this photoreaction. It has been found identical to the dihydrocytosine derivative $\underline{7}$ which we have prepared by treatment of 5, 6 dihydro 1, 3-dimethyl 4-thiouracil $\underline{8}$ with 1-aminobutane at room temperature (8)

	m,s,	I.R.	U.V.			N.M.R.*			
	м+	[∨] (cm ⁻¹)	ε λ max	N ₁ -CH ₃	N ₃ CH ₃	н ₅	н ₆	NH2 CH	$ _{N}^{CH} \leq \underline{\underline{H}}$
<u>4a</u>	229	3510, 3420 1650	€ 271=13800	2.80	2.80	2 80	3 00	4 00	4 60 5 4
<u>4b</u>	229	3510, 3430 1650	€ 269 =1 3800	2.80	2 80	2 85	3 10	3 60	47050
<u>5a</u>	271	3470,3360 1700	⁶ 283=12600	3 20	3 60	3.30	3,50	4 20	6.00
<u>5b</u>	271	3470, 3360 1700	¢ 285 ⁼¹²⁵⁰⁰	3 20	3,60	3.30	3 30	4 40	5.40
<u>6a</u>	255	3470, 3380 1730, 1670		3,30	3,30	2.80	3,70	4.30	6 40
<u>6b</u>	255	3460, 3370 1730, 1680		3,20	3 20	2 80	3 70	4 30	6.00

TABLE

"Solvent = $CDCl_3$ are given in ppm

Accordingly, $\underline{7}$ could arise from $\underline{8}$ through this mode of formation suggesting that the latter is produced in the photoreaction.

We have irradiated (9) 1-cyclohexyl 4-thiouracil $\underline{3}$ in presence of 1-aminobutane In this case also we have observed very similar results since diastereoisomeric compounds $\underline{9}$ as well as the 5, 6-dihydrocytosine $\underline{10}$ (mp 174-177°) are the main photoproducts. The proposed structures for these compounds are in agreement with their analytical and spectral data.

In conclusion, 6-aminoalkyl 5, 6-dihydropyrimidine derivatives can be readily available by irradiation of mono- and disubstituted 4-thiouracils in presence of primary amines. It has been previously reported that, unlike its 4-thio analogue, light induced interaction of 1, 3-dimethyl uracil with primary amines is much less specific and leads to several types of photoproducts (10)

<u>Acknowledgement</u> We are very grateful to Dr J Polonsky for her encouragement and support throughout this work

REFERENCES

- 1 M.G. Pleiss and P.A. Cerutti (1971) Biochemistry, 10, 3093.
- 2 D E Berstrom and N.J. Leonard (1972) Ibid., 11, 1
- J.L. Fourrey, P Jouin and J Moron (1973) Tetrahedron Letters, 3229.
 J.L. Fourrey, P. Jouin and J. Moron (1974) Ibid , 3005.
 C. Fombert, J.L. Fourrey, P. Jouin and J. Moron (1974) Ibid , 3007
 P. Jouin and J.L. Fourrey (1975) Ibid., 1329
- 4 J.L. Fourrey and P. Jouin (1973) Ibid., 3225
- 5 E. Sato and Y Kanaoka (1974) Chem. Pharm Bull., 22, 799
- 6 A solution containing 1 % of 1-aminobutane is made 1.10^{-2} M in 1, 3-dimethyl 4-thiouracil 2 and irradiated through Pyrex under N₂ atmosphere with a Hanau TQ 150 lamp until complete disappearance of the starting material
- 7 P Jouin, Thesis Université Paris-Sud (Orsay) (1973)
- 8 D M Brown and M.J E Hewling (1968) J Chem Soc (C) 2050
 V. Skaric, B. Gaspert, M. Hohnjec and G. Lacan (1974) J. Chem Soc. (P.T 1) 267.
- 9 A 5.10⁻³M solution <u>3</u> in CH₂Cl₂ (or CH₃OH) containing 1 % 1-aminobutane is irradiated as above (6) at 0°C.
- 10 L.S. Gorelic, P Lisagor and N C. Yang (1972) Photochem and Photobiol., 16, 465.